王韬
教授
13021703184
michealwang@nbut.edu.cn
研究领域:机电一体化技术,应用超导,电力传动,电工装备制造
个人简介:王韬,1982年7月生,浙江宁波人,IEEE Member。获评浙江省C类领军人才,浙江省创新团队负责人,湖州市南太湖精英创新B类人才。担任浙江省重大科技专项评审专家,在IEEE Trans. on Appl. Supercond.、Supercond. Sci and Tech.等多个高温超导材料应用领域权威国际期刊担任审稿专家与技术主编。
长期从事2代稀土系(REBCO)高温超导材料在下一代先进医疗用电磁装备、储能装备与电力传动装备小型轻量化过程中的应用电磁技术及其周边机电一体化关键技术的研究与开发。近年来,主持海外国家级项目5项,省部级人才项目1项,省部级重点项目1项,市厅级项目4项等,累计发表SCI/EI论文40余篇,获批专利9件,并获得多个国际学术奖项。
教育背景
[1]2003年4月—2009年9月,日本早稻田大学理工学部电气信息与生命工程专业,工学学士
[2]2009年9月—2011年9月,日本早稻田大学大学院先进理工研究科电气信息与生命工程专业博士前期课程,工学硕士
[3]2011年9月—2014年9月,日本早稻田大学大学院先进理工研究科电气信息与生命工程专业博士后期课程,工学博士
教科研成果
研究项目
科研项目:
[1]2018年1月—2021年1月,《超高磁场•大孔径MRI用REBCO高温超导磁体系统的高可靠性与小型化技术研究》,中央直属高校基本科研业务费重大重点培育项目,总额40万人民币,主持。
[2]2019年1月—2020年1月,《关于高磁场•大孔径MRI用REBCO高温超导磁体系统高可靠性的基础研究》,南京市留学人员科技创新项目择优资助,总额3万人民币,主持。
[3]2018年12月—2021年12月,《洗衣机用永磁同步电动机开发及其产业化项目》,湖州市厅级研发项目,财政拨款:80万元,企业自筹:1220万元,主持。
[4]2019.09—2021.09,南太湖精英创新人才B类项目,80万元,湖州市南太湖就精英人才项目,主持。
[5]2021年1月—2023年12月,《高效低噪音EC250风机系统研发及产业化》,湖州市厅级研发项目,总额70万元,主持。
[6]2021.01—2023.12,《基于人工智能的高功率密度电机的设计研发及其产业化》,浙江省万人计划青年拔尖人才项目,160万元,浙江省人社厅,主持。
[7]2023.1—2026.1,《多能源互补型微网用高功率密度电机关键技术研究及其产业化》,浙江省创新团队项目,财政拨款:1300万元,企业自筹:1300万元,主持。
研究成果
论文:
[1]T. Wang and J. Liu, "Structural Reinforcement Strategy for Racetrack REBCO HTS Magnet of MW-Class Wind Turbine," in IEEE Transactions on Applied Superconductivity, vol. 34, no. 8, pp. 1-5, Nov. 2024, Art no. 4905005, doi: 10.1109/TASC.2024.3434816.
[2]J. Liu, X. Zhang and T. Wang, "Damping Region Analysis and Extension for Grid-connected LCL-type Inverter Based on Active Damping Strategy," 2023 26th International Conference on Electrical Machines and Systems (ICEMS), Zhuhai, China, 2023, pp. 1110-1115, doi: 10.1109/ICEMS59686.2023.10345205.
[3]T. Wang and J. Liu, "Numerical Investigation of Mechanical Characteristics of Racetrack REBCO HTS Magnet for MW-Class Wind Turbine Generator," 2023 26th International Conference on Electrical Machines and Systems (ICEMS), Zhuhai, China, 2023, pp. 2956-2964, doi: 10.1109/ICEMS59686.2023.10344383.
[4]J. Liu, X. Zhang and T. Wang, "Grid-Voltage Feedforward Control Strategy Based on Padé Theory for the LCL-type Inverter in SMES," 2023 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), Tianjin, China, 2023, pp. 1-2, doi: 10.1109/ASEMD59061.2023.10369596.
[5]J. Liu, X. Zhang and T. Wang, "Active Damping Performance Analysis and Improvement for the LCL-type Inverter in SEMS," 2023 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), Tianjin, China, 2023, pp. 1-2, doi: 10.1109/ASEMD59061.2023.10368936.
[6]T. Wang and J. Liu, "Study of Electromagnetic Stress Reinforced Structure of Racetrack HTS Magnet for MW-Class Wind Turbine Generator," 2023 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), Tianjin, China, 2023, pp. 1-2, doi: 10.1109/ASEMD59061.2023.10369678.
[7]T. Wang, H. Quan, L. Chen, K. Ding, S. Du and C. Zou, "Conceptual Design of 3-T All HTS MRI Using No-Insulation Winding Technology: Electromagnetic Stress Reinforced Structure," in IEEE Transactions on Applied Superconductivity, vol. 31, no. 8, pp. 1-5, Nov. 2021, Art no. 4401205, doi: 10.1109/TASC.2021.3116555.
[8]T. Wang, K. Ding, S. Du and C. Zou, "Design and Evaluation of a Protection Method Based on Controllable Resistance for Meter-Class REBCO No-Insulation Pancake Coils," in IEEE Transactions on Applied Superconductivity, vol. 31, no. 8, pp. 1-5, Nov. 2021, Art no. 4902805, doi: 10.1109/TASC.2021.3110470.
[9]T. Wang, K. Ding, S. Du and C. Zou, "Study on Electromagnetic Stress Optimization and its Resistant Structure in Toroidal HTS Magnet Applied in High-Energy Storage Density SMES," in IEEE Transactions on Applied Superconductivity, vol. 31, no. 8, pp. 1-5, Nov. 2021, Art no. 4902305, doi: 10.1109/TASC.2021.3107822.
[10]T. Wang, H. Quan, R. Luo, K. Ding, S. Du and C. Zou, "Conceptual Design of 3-T all HTS MRI Using No-Insulation Winding Technology: Main Split Coil-System and its Active Shield," in IEEE Transactions on Applied Superconductivity, vol. 31, no. 8, pp. 1-5, Nov. 2021, Art no. 4401105, doi: 10.1109/TASC.2021.3101774.
[11]J. Liu, M. Yang and T. Wang, "Impedance-Based Stability Analysis of Grid-Tied Photovoltaic System With Superconducting Magnetic Energy Storage System," in IEEE Transactions on Applied Superconductivity, vol. 31, no. 8, pp. 1-4, Nov. 2021, Art no. 5402504, doi: 10.1109/TASC.2021.3101778.
[12]H. Quan, J. Lv, W. Zhang and T. Wang, "Spatial Correlation Modeling for Optimal Power Flow With Wind Power: Feasibility in Application of Superconductivity," in IEEE Transactions on Applied Superconductivity, vol. 31, no. 8, pp. 1-5, Nov. 2021, Art no. 5403405, doi: 10.1109/TASC.2021.3101770.
[13]T. Wang et al., "Study on Electromagnetic Stress Optimization and its Resistant Structure in Toroidal HTS Magnet Applied in High-Energy Density SMES," 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), Tianjin, China, 2020, pp. 1-2, doi: 10.1109/ASEMD49065.2020.9276232.
[14]T. Wang et al., "Optimal Design of HTS Main Split Magnet for 240MeV Proton Cyclotron Accelerator," 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), Tianjin, China, 2020, pp. 1-2, doi: 10.1109/ASEMD49065.2020.9276080.
[15]T. Wang, L. Chen, F. Wen, K. Ding, S. Du and C. Zou, "Conceptual Densign of 3-T All HTS MRI using No-Insulation Winding Technology: Electromagnetic Stress Reinforcement Structure," 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), Tianjin, China, 2020, pp. 1-3, doi: 10.1109/ASEMD49065.2020.9276226.
[16]T. Wang, Q. Qin, T. Qu, F. Wen, F. Deng and W. Hua, "Influence of Electromagnetic Fluctuation on the Behaviors of NI REBCO Racetrack Coils Applied in MW-Class Wind Turbine Generator," 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), Tianjin, China, 2020, pp. 1-2, doi: 10.1109/ASEMD49065.2020.9276224.
[17]T. Wang, K. Ding, S. Du and C. Zhou, "Design and Analysis of a No-Insulation Pancake Coil-System for Next-Generation Meter-Class Bore High-Field MRIs," 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 2019, pp. 1-5, doi: 10.1109/ICEMS.2019.8921628.
[18]W. Li, T. W. Ching, C. Jiang, T. Wang and L. Sun, "Quantitative Comparison of Wireless Power Transfer Using HTS and Copper Coils," in IEEE Transactions on Applied Superconductivity, vol. 29, no. 5, pp. 1-6, Aug. 2019, Art no. 5501806, doi: 10.1109/TASC.2019.2909210.
[19]K. Katsumata, T. Wang, A. Ishiyama, S. Noguchi, K. Monma, S. Nagaya, & T. Watanabe, "Influence of the Turn-to-Turn Contact Electrical Resistance on the Thermal Stability in Meter-Class No-Insulation REBCO Pancake Coils During a Local Normal-State Transition," in IEEE Transactions on Applied Superconductivity, vol. 27, no. 4, pp. 1-5, June 2017, Art no. 4602005, doi: 10.1109/TASC.2017.2657679.
[20]T. Wang, K. Katsumata, A. Ishiyama and S. Noguchi, "Detection Method for a Local Normal-State Transition in a No-Insulation REBCO Pancake Coil," in IEEE Transactions on Applied Superconductivity, vol. 27, no. 4, pp. 1-6, June 2017, Art no. 0601206, doi: 10.1109/TASC.2016.2633720.
[21]A. Mochida, H. Ueda, S. Noguchi, T. Wang, A. Ishiyama, H. Miyazaki, T. Tosaka, S. Nomura, T. Kurusu, S. Urayama & H. Fukuda, "Evaluation of Magnetic Field Distribution by Screening Current in Multiple REBCO Coils," in IEEE Transactions on Applied Superconductivity, vol. 26, no. 4, pp. 1-5, June 2016, Art no. 4702805, doi: 10.1109/TASC.2016.2542980.
[22]Oki, T., Ikeda, A., Wang, T., Ishiyama, A., Noguchi, S., Monma, K., Watanabe, T., & Nagaya, S., "Evaluation on Quench Protection for No-Insulation REBCO Pancake Coil," in IEEE Transactions on Applied Superconductivity, vol. 26, no. 4, pp. 1-5, June 2016, Art no. 4702905, doi: 10.1109/TASC.2016.2540001.
[23]Ueda, H., Imaichi, Y., Wang, T., Ishiyama, A., Noguchi, S., Iwai, S., Miyazaki, H., Tosaka, T., Nomura, S., Kurusu, T., & other, "Numerical Simulation on Magnetic Field Generated by Screening Current in 10-T-Class REBCO Coil," in IEEE Transactions on Applied Superconductivity, vol. 26, no. 4, pp. 1-5, June 2016, Art no. 4701205, doi: 10.1109/TASC.2016.2535965.
[24]Matsumi, A., Ueda, H., Noguchi, S., Wang, T., Ishiyama, A., Miyazaki, H., Tosaka, T., Nomura, S., Kurusu, T., Urayama, S., & others (2016). Evaluation of irregular magnetic field generated by screening current in REBCO coils for high accuracy field, IEEE Transactions on Applied Superconductivity, 26(4), pp. 1–5.
[25]Ikeda, A., Oki, T., Wang, T., Ishiyama, A., Monma, K., Noguchi, S., Watanabe, T., & Nagaya, S. (2016). Transient behaviors of no-insulation REBCO pancake coil during local normal-state transition, IEEE Transactions on Applied Superconductivity, 26(4), pp. 1–4.
[26]Wang, T., Noguchi, S., Wang, X., Arakawa, I., Minami, K., Monma, K., Ishiyama, A., Hahn, S., & Iwasa, Y. (2015). Analyses of transient behaviors of no-insulation REBCO pancake coils during sudden discharging and overcurrent, IEEE Transactions on Applied Superconductivity, 25(3), pp. 1–9.
[27]Ueda, H., Saito, J., Ariya, Y., Mochida, A., Wang, T., Wang, X., Agatsuma, K., & Ishiyama, A. (2014). Reduction of irregular magnetic field generated by screening current in REBCO coil, IEEE Transactions on Applied Superconductivity, 25(3), pp. 1–5.
[28]Ueda, H., Ishiyama, A., Ariya, Y., Wang, T., Wang, X., Agatsuma, K., Miyazaki, H., Tosaka, T., Nomura, S., Kurusu, T., & others (2014). Evaluation of magnetic-field distribution by screening current in multiple REBCO coils, IEEE Transactions on Applied Superconductivity, 25(3), pp. 1–5.
[29]Wang, X., Wang, T., Nakada, E., Ishiyama, A., Itoh, R., & Noguchi, S. (2014). Charging behavior in no-insulation REBCO pancake coils, IEEE Transactions on Applied Superconductivity, 25(3), pp. 1–5.
[30]Ueda, H., Fukuda, M., Hatanaka, K., Michitsuji, K., Karino, H., Wang, T., Wang, X., Ishiyama, A., Noguchi, S., Yanagisawa, Y., & others (2014). Measurement and simulation of magnetic field generated by screening currents in HTS coil, IEEE transactions on applied superconductivity, 24(3), pp.1–5.
[31]Wang, T., Karino, H., Michitsuji, K., Wang, X., Ishiyama, A., Ueda, H., Fukuda, M., Watanabe, T., & Nagaya, S. (2014). Influence of winding accuracy on magnetic field distribution in YBCO pancake coil for cyclotron application, IEEE transactions on applied superconductivity, 24(3), pp. 1–5.
[32]Wang, X., Wang, T., Ishiyama, A., Yagi, M., Maruyama, O., & Ohkuma, T. (2013). Experiments and numerical simulations on local degradation characteristics of coated conductor due to overcurrent, IEEE transactions on applied superconductivity, 23(3), pp. 8002205–8002209.
[33]Ueda, H., Fukuda, M., Hatanaka, K., Wang, T., Ishiyama, A., & Noguchi, S. (2012). Spatial and temporal behavior of magnetic field distribution due to shielding current in HTS coil for cyclotron application, IEEE transactions on applied superconductivity, 23(3), pp. 4100805–4100805.
[34]Ueda, H., Fukuda, M., Hatanaka, K., Wang, T., Wang, X., Ishiyama, A., Noguchi, S., Nagaya, S., Kashima, N., & Miyahara, N. (2012). Conceptual design of next generation HTS cyclotron, IEEE transactions on applied superconductivity, 23(3), pp. 4100205–4100205.
[35]Wang, T., Ueda, H., Agatsuma, K., & Ishiyama, A. (2011). Evaluation of positional stability in active magnetic levitation using spherical HTS bulk for inertial nuclear fusion, IEEE transactions on applied superconductivity, 21(3), pp. 1579–1583.
[36]罗荣福,王韬,李会芳,唐章俊,《单项异步电机无级调速控制系统及其控制算法》,南京理工大学学报,第47卷第1期,2023年2月.
[37]NAKAZONO, K., MATSUMI, A., WANG, T., ISHIYAMA, A., UEDA, H., NOGUCHI, S., ...& FUKUYAMA, H. (2016). 9.4 Tヒト全身用MRIコイルにおける遮蔽電流による不整磁場と磁場均一度の評価.電気学会超電導機器研究会資料, (1-12), 1-6.
[38]OZONE, Y., NAKAZONO, K., WANG, T., ISHIYAMA, A., UEDA, H., NOGUCHI, S., ... & KURUSU, T. (2016). Reduction technique of Irregular Magnetic Field Distribution Generated by Screening Current in REBCO Multiple Coils.電気学会金属・セラミックス研究会資料, 1100(13-40), 43-47.
[39]ARAKAWA, I., MINAMI, K., NAKADA, E., OKI, T., IKEDA, A., WANG, T., ...& NAGAYA, S. (2015).無絶縁及び部分絶縁REBCOパンケーキコイルの通電特性解析・評価.電気学会超電導機器研究会資料, (2-7), 5-10.
[40]H. UEDA, S. NOGUCHI, K. MICHITSUJI, Y. ARIYA, T. WANG, X. WANG, & A. ISHIYAMA, (2014).REBCO超電導コイルにおける遮へい電流の影響評価,電気学会超電導機器研究会資料, (1-7, 9-14), 25-30.
[41]T. OKI, A. IKEDA, I. ARAKAWA, K. MINAMI, E. NAKATA, T. WANG, A. ISHIYAMA, X. WANG, S. NOGUCHI, S. HAHN, & Y. IWASA (2014),無絶縁REBCOパンケーキコイルの過電流特性に関する数値解析・評価,電気学会超電導機器研究会資料, (15-24), 45-49.
[42]H. UEDA, M. FUKUDA, K. HATANAKA, S. NOGUCHI, J. SAITO, Y. ARIYA, H. KARINO, K. MICHITSUJI, T. WANG, X. WANG, & A. ISHIYAMA (2013). 3Experiment and Simulation of Screening Current and Magnetic Field Distribution in HTS Coil.電気学会超電導応用電力機器研究会資料, (22-42), 101-106.
发明专利:
[1]Method of Fan Overheat Protection and Air Volume Control System, Invention Patent, Patent No. 202011103229.X, China, authorized, 2020.
荣誉
[1]G30优秀私费留学生奖学生,日本文部省,2009年
[2]“实践型研究领袖”称号:早稻田大学职业拓展中心,2012年
[3]浙江省湖州市南太湖精英B类人才,浙江省湖州市,2018年
[4]Best Paper Award(最佳论文奖), ICEMS 2019技术编委会,2019年
[5]Best Poster Award(最佳海报奖),ASEMD 2020技术编委会,2020年
[6]Best Chair Award(最佳主席奖),ASEMD 2020技术编委会,2020年
[7]Annual Most Active Chairman(年度最活跃主席奖),IEEE symposium on Applied Superconductivity技术编委会,2020年
[8]浙江省万人计划青年拔尖人才,浙江省人社厅,2021年
[9]湖州人才新锐,湖州市组织部与人社局,2021年
[10]五一劳动奖章,湖州市组织部与人社局,2021年
[11]五一劳动模范,湖州市组织部与人社局,2022年
[12]“实干争先奋斗者”称号,湖州市组织部与人社局,2022年
[13]浙江省创新团队负责人,浙江省科技厅,2023年